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Abstract
First-order Lagrangian densities with first-order Euler–Lagrange operator
are characterized. Variationally trivial Lagrangians and locally variational
operators of first order are determined.
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1. Introduction

The inverse problem of the calculus of variations consists in characterizing those differential
operators which are the Euler–Lagrange operator of a Lagrangian density. The goal of this
paper is to provide a geometric characterization of the first-order Lagrangian densities whose
Euler–Lagrange operator is of first order. Furthermore, this characterization allows us to
determine the variationally trivial Lagrangians and the locally variational operators of first
order.

2. First-order Euler–Lagrange operators

2.1. Notations and preliminaries

Throughout this section we consider a fibred manifold p : M → N (i.e. p is a surjective
submersion of smooth manifolds) with dim N = n, dim M = m + n. Let V (p) = V (M) =
{X ∈ T (M) : p∗X = 0} be its vertical bundle. The global sections of V (p) are denoted
by Xv(p), or else by Xv(M). We also denote by Xv

c(p) (or by Xv
c (M)) the ideal of vector

fields X ∈ Xv(p) such that p(support X) is compact. Let pr : J r(p) → N (or even J rM)
be the r-jet bundle of local sections of p, and by prs : J r(p) → J s(p), r � s, the natural
projections. If (xi; yα), 1 � i � n, 1 � α � m, is a fibred coordinate system for p, then the
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induced coordinates on J r(p) are denoted by
(
yα

I

)
, I = (i1, . . . , in) ∈ N

n, 0 � |I | � r , with
|I | = i1 + · · · + in, yα

0 = yα . The total derivative with respect to the variable xi is denoted by

d

dxi
= ∂

∂xi
+

∑
|I |�0

yα
I+(i)

∂

∂yα
I

where (i) = (0, . . . , 0,
(i

1, 0, . . . , 0) ∈ N
n. Let Cr (p) be the sheaf of germs of 1-contact

differential forms. A vector field X ∈ X(J rM) is said to be an infinitesimal contact
transformation (cf [8, 9]) if LXCr (p) ⊆ Cr (p). We denote by X(r) the infinitesimal contact
transformation associated with a vector field X ∈ X(M). We also denote by (cf [6, section 4])

h: p∗
r+1,r

q∧
T ∗J rM →

q∧
T ∗J r+1M

h
(
j r+1
x s, ω

) = p∗
r+1((j

rs)∗ω)

the horizontalization operator. If ω is a q-form on J r(p), the form p∗
r+1,rω admits a

decomposition as follows (e.g., see [6, section 4]): p∗
r+1,rω = ∑q

i=0 hi(ω), where hi(ω)

is the i-contact component of ω (which is (q − i) horizontal) and h0(ω) = h(ω).
We denote by E[L] the Euler–Lagrange operator of a first-order Lagrangian density L

on p: M → N , which is considered as a section of the pull-back to J 2(p) of the bundle
T ∗M ∧ ∧n

T ∗N ; i.e. E[L] ∈ �(J 2M,T ∗M ∧ ∧n
T ∗N). The operator E[L] is said to be of

order s � 2 if it can be obtained as the pull-back of a section in �(J sM, T ∗M ∧ ∧n
T ∗N).

The Euler–Lagrange operator is determined by the equation∫
N

(j 1s)∗(X(1)� dL) =
∫

N

(j 2s)∗(X� E[L]) (2.1)

for every open subset U ⊆ N , every section s of p defined on U and every X ∈ Xv
c(p

−1(U)).

2.2. Densities and horizontalization

Proposition 2.1. The operator hp: �n+p(M) → �n+p(J 1M) is injective for every p � 0.

Proof. We proceed by recurrence on p. For p = 0 we remark that hp coincides with the
horizontalization operator. Let

� =
n∑

k=0

∑
j1<···<jk

∑
α1<···<αk

A
α1...αk

j1...jk
dyα1 ∧ · · · ∧ dyαk ∧ volj1...jk

(2.2)

be the local expression of � ∈ �n(M), where

volj1...jk
= ∂/∂xjk� . . .� ∂/∂xj1(vol).

If we define

Lk =
∑

j1<···<jk

∑
α1<···<αk

A
α1...αk

j1...jk
y

α1
j1

. . . y
αk

jk

then we have h(�) = Lvol, with L = ∑n
k=0 Lk . As Lk is the homogeneous component of

degree k of L, we have

A
α1...αk

j1...jk
= ∂kLk

∂y
α1
j1

. . . ∂y
αk

jk

. (2.3)

Hence � ∈ ker h if and only if Lk = 0, and then, A
α1...αk

j1...jk
= 0; that is � = 0.
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Assume p > 0. Let us fix an index 1 � α � m. For every ω ∈ �n+p(M) we
have ω = dyα ∧ ωα + ηα (no summation), where ∂/∂yα� ωα = 0, ∂/∂yα� ηα = 0. Hence
hp(ω) = dyα ∧hp−1(ωα) + η′

α, with ∂/∂yα� η′
α = 0. If hp(ω) = 0, then the coefficient of dyα

must vanish; hence hp−1(ωα) = 0, and by virtue of the recurrence hypothesis, we conclude
ωα = 0 for every index α, and we can finish the proof. �
Theorem 2.2. Let L be a first-order Lagrangian density. The following conditions are
equivalent:

(a) There exists � ∈ �n(M) such that L = h(�).
(b) The Euler–Lagrange operator E[L] is of first order.

If these conditions hold, then E[L] = h1(d�).

Proof. If L = h(�), then p∗
10� = L + θ , where θ is a 1-contact form. For every X ∈ Xv

c(M)

we have

LX(1)L = X(1)� p∗
10(d�) + d(X(1)� p∗

10�) − LX(1) θ . (2.4)

As deg d� = n + 1 > dim N , we have h(d�) = 0 and p∗
10(d�) = h1(d�) + θ ′, where θ ′

is a 2-contact form. Hence X(1)� p∗
10(d�) = X(1)� h1(d�) + X(1)� θ ′, where X(1)� θ ′ is a

1-contact form. Substituting the right-hand side of this equation into (2.4) and recalling that
X is p-vertical, we obtain

X(1)� dL = LX(1)L = X(1)� h1(d�) + d(X(1)� p∗
10�) + X(1)� θ ′ − LX(1) θ .

Since X(1)� θ ′ −LX(1) θ is a 1-contact form, pulling the previous equation back along j 1s, from
Stokes’ theorem and the formula (2.1) we obtain∫

N

(j 1s)∗(X(1)� dL) =
∫

N

(j 1s)∗(X� h1(d�)) =
∫

N

(j 2s)∗(X� E[L]).

Hence E[L] = h1(d�). Moreover, the Euler–Lagrange operator

E[L] =
(

∂L

∂yα
− ∂2L

∂xj∂yα
j

− ∂2L

∂yβ∂yα
j

y
β

j − ∂2L

∂y
β

i ∂yα
j

y
β

(ji)

)
dyα ∧ vol

is of first order if and only if the following equations hold:
∂2L

∂y
β

i ∂yα
j

+
∂2L

∂y
β

j ∂yα
i

= 0 ∀i, j. (2.5)

Letting i = j in (2.5), we deduce that L is a polynomial of degree n in the first derivatives
with coefficients in C∞(M); say L = ∑

A
α1...αr

j1...jr
y

α1
j1

. . . y
αr

jr
, where we assume that A

α1...αr

j1...jr
is

symmetric with respect to each of the pairs αi, ji , for i = 1, . . . , r . The Lagrangian L satisfies
equation (2.5) if and only if all its homogeneous components Lk satisfy such an equation.

Substituting Lk for L into (2.5) and taking partial derivatives with respect to y
α1
j1

, . . . , y
αk−2
jk−2

,
we obtain

∂kLk

∂y
α1
j1

. . . ∂y
αk−2
jk−2

∂y
β

i ∂yα
j

+
∂kLk

∂y
α1
j1

. . . ∂y
αk−2
jk−2

∂y
β

j ∂yα
i

= 0

and recalling formula (2.3), we have A
α1...αk−2βα

j1...jk−2ij
+ A

α1...αk−2βα

j1...jk−2ji = 0. Hence A
α1...αk

j1...jk
is

skew-symmetric in the indices j1, . . . , jk (keeping α1, . . . , αk fixed), and conversely, that
is A

α1...αk

σ (j1)...σ (jk)
= (−1)σA

α1...αk

j1...jk
, for every permutation σ of {j1, . . . , jk}. Accordingly,

Lkvol =
∑

α1,...,αk

∑
j1<···<jk

∑
σ

sign(σ )A
α1...αk

j1...jk
y

α1
σ (j1)

· · · yαk

σ (jk)
vol

= h


 ∑

α1,...,αk

∑
j1<···<jk

A
α1...αk

j1...jk
dyα1 ∧ · · · ∧ dyαk ∧ volj1,...,jk


 . �



6526 R Ferreiro Pérez and J Muñoz Masqué

Remark 2.3. In the conditions of theorem 2.2, we have
∫
(j 1s)∗L = ∫

s∗�, and hence the
extremals of a variational problem are characterized by the Hamilton–Cartan equations for �

s∗(X� d�) = 0 ∀X ∈ X(M). (2.6)

As a consequence of theorem 2.2 and proposition 2.1, we obtain a well-known
characterization of first-order variationally trivial Lagrangians (see [5, p 36]).

Corollary 2.4. For a first-order Lagrangian density L on p: M → N , the two conditions
below are equivalent:

(a) L is variationally trivial.
(b) There exists a closed form � ∈ �n(M) such that L = h(�).

Proof. If (a) holds, E[L] = 0; hence from theorem 2.2 we have L = h(�), where � is an
n-form on M. As E[L] = h1(d�) and the operator h1 is injective by virtue of proposition 2.1,
we conclude. Conversely, if (b) holds, then we obtain E[L] = E[h(�)] = h1(d�) = 0. �

Remark 2.5. From the previous corollary (and the well-known fact that �r(M) is generated
as a C∞(M)-module by closed r-forms), we obtain another equivalent condition to those in
theorem 2.2:

(c) The Lagrangian density L is a finite sum fiLi , where fi ∈ C∞(M), and every Li is a
first-order variationally trivial Lagrangian density.

Remark 2.6. As an immediate consequence of theorem 2.2, we also obtain the characterization
of variational (n + 1)-forms on J 1M stated in [7, theorem 1]; namely, an (n + 1)-form τ on
J 1M is variational, if and only if there exists an n-form � on M such that τ = E[h(�)].

Remark 2.7. Let

�L = ∂L

∂yα
i

θα ∧ voli + L

be the Poincaré–Cartan form attached to the Lagrangian density L = Lvol, where θα =
dyα − yα

j dxj is the standard contact form. We know (e.g., see [4]) that �L is p10-projectable
onto M if and only if the Lagrangian L is an affine function over p10: J 1 → M; that is
locally we should have L = Ai

αy
α
i + A0 for certain functions A0, Ai

α ∈ C∞(M). If this is the
case, then E[L] is of first order, but the converse is not true except for mechanics; i.e. when
n = dim N = 1. In the field theory, there are important examples of Lagrangians defined by
affine functions. For example, if N admits a spin structure, then the Dirac Lagrangian is an
affine function. This explains why the equation for the free Dirac electron fields is of first
order. Similarly, the scalar curvature density on the bundle of metrics of prescribed signature,
M, of the ground manifold N determines a second-order Lagrangian that is an affine function
over p21: J 2M → J 1M .

An example of a Lagrangian density whose Euler–Lagrange operator is of first order, but
which is not affine, is as follows: consider a σ -model defined by mappings f : N → F ,
which corresponds to the sections of the trivial bundle M = N × F → N . We set
L
(
j 1
x f

) = (f ∗ω)(x), where ω ∈ �n(F) is an arbitrary n-form. For example, the topological
locally defined (in the sense of section 2.3) Wess–Zumino terms are obtained in this way, e.g.,
see [1, p 4].
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Remark 2.8. Theorem 2.2 cannot directly be generalized to the higher order Lagrangians.
Indeed, let L be the second-order Lagrangian on p: R

2 × R
3 → R

2 given by

L =

∣∣∣∣∣∣∣
y1

11 y2
11 y3

11

y1
12 y2

12 y3
12

y1
22 y2

22 y3
22

∣∣∣∣∣∣∣ dx1 ∧ dx2.

It can be shown that E[L] is a third-order operator, but it is clear that L cannot be written as
h(�) for any � ∈ �n(J 1(p)), as L is a polynomial of third degree in the derivatives of second
order, while h(�) is of second degree at most.

2.3. Locally variational first-order operators

Proposition 2.9. A section T ∈ �(J 1(p),
∧n

T ∗N ∧T ∗M) is a locally variational first-order
operator if and only if there exists a closed form �T ∈ �n+1(M) such that T = h1(�T ). The
form �T is uniquely determined by T.

Proof. Suppose T is locally variational. As is well known (see [3], theorem 3.1), locally,
there exists a Lagrangian L of order not greater than the order of T (of first order, in this
case) such that E[L] = T . By virtue of theorem 2.2, there exists a form � ∈ �n(M) such
that L = h(�); we define �T = d�. According to corollary 2.4, if L′ = h(�′) is another
first-order Lagrangian satisfying these conditions, then we have h1(d�) = h1(d�′); hence
d�′ = d� = �T , as h1 is injective. So, �T is a well-defined global form, and it is closed
since it is locally exact. In addition, we have T = h1(�T ), as follows from theorem 2.2.

Conversely, if �T ∈ �n+1(M) is closed, it is locally exact, and locally there is � ∈ �n(M)

such that �T = d�. From theorem 2.2 we have h1(�T ) = E[h(�)]; i.e. h1(�T ) is locally
variational.

As for the uniqueness of �T , if h1(�) = 0 then � = 0. �

Remark 2.10. The previous results can be summarized by saying that, in the following
diagram, the vertical maps are isomorphisms:{

closed
n-forms in M

}
↪→ {n-forms in M} d→




closed
(n + 1)-forms

in M




h ↓ h ↓ h1 ↓


variationally
trivial

first-order
Lagrangians


 ↪→




first-order
Lagrangians

with first-order
Euler–Lagrange

operator




E→



locally variational
first-order
operators


 .

Remark 2.11. In the global version of the inverse problem in the calculus of variations (see
[2, 10]), it is proved that the map

�: Hn+1(M) −→ Hn+1(E∗(J ∞M)) �([ω]) = [(p∞1)
∗h1(ω)]

is an isomorphism between the de Rham cohomology of M and the cohomology of the Euler–
Lagrange complex E∗(J ∞M).

Using this property, we obtain the following results.

Proposition 2.12. A closed form � ∈ �n+1(M) is exact if and only if h1(�) is globally
variational.
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Proposition 2.13. IfL is a Lagrangian density of order r > 1 with a first-order Euler–Lagrange
operator, then there exists a first-order Lagrangian density L′ such that E[L′] = E[L].

Proposition 2.14. If T is a locally variational operator, then there exists a Lagrangian density
L and a first-order locally variational operator T ′, such that

T = E[L] + T ′. (2.7)

By virtue of the previous proposition, the study of the cohomological aspects of locally
variational operators can be reduced to first-order ones. Note, however, that the descomposition
(2.7) is not unique. For example, if T has a symmetry, it is not sure that there exists a
decomposition (2.7) in which T ′ and L also have that symmetry.

If we define the set of extremal sections of a locally variational first-order operator
T = h1(�T ) by setting Extr(T ) = {s ∈ �(p) : T (j 1s) = 0}, we have the corresponding
Hamilton–Cartan equations, generalizing the equation (2.6):

Extr(T ) = {s ∈ �(p) : s∗(X� �T ) = 0,∀X ∈ X
v(p)}. (2.8)

Example 2.15. In [1] the author considers some examples of problems in which the Lagrangian
density decomposes as L = L0 + T , where L0 is a globally well-defined Lagrangian and the
term T —the so-called topological term—satisfies the following conditions:

1. T may be interpreted as a differential form.
2. Under an appropriate transformation, T changes by a total derivation.
3. T is not globally defined.

We will show that this decomposition is related to that in (2.7), and the topological term
is associated with a locally variational first-order operator. We will analyse the following
example dealt with in [1]: consider a point particle moving in a two-dimensional Riemann
surface � in the presence of a magnetic monopole with potential Aµ dxµ. The classical
Lagrangian for this system is

L = 1

2
ẋ2 +

1

4e2
FµνF

µν + Aµẋµ.

The corresponding topological term is T = Aµẋµ dt . Integrating, we have
∫

Aµẋµ dt =∫
�

Aµ dxµ. In our setting, we can consider the fibred manifold R × � → R and the form
A = π∗

2 (Aµ dxµ). It is clear that h(A) = T and, hence, it corresponds to a first-order
Lagrangian with first-order Euler–Lagrange equations. The problem is that A is not a globally
defined 1-form, it is only locally defined. (Remark that A is a 1-form on the corresponding
principal bundle, and in a local chart can be represented by a 1-form on �.) If we consider two
different local charts, the corresponding forms A and A′ will differ in a gauge transformation:
A − A′ = df ; but the form F = dA (the curvature) is a globally well-defined 2-form in �.

This can be explained as follows: F represents a first-order locally variational operator
that will not be globally variational unless [F ] = 0 in H 2(�, R), and the topological term in
the Lagrangian is a ‘Lagrangian density’ for this operator. Also, if we consider the Euler–
Lagrange operator of L, we obtain E[L0] + TF , as in the decomposition (2.7). So, this system
is described by a locally variational operator T, and its cohomology class in the adequate
Euler–Lagrange complex is that corresponding to [F ].

In [1] the quantization condition of this system is shown to be that 1
2π

[F ] belongs to
H 2(�, Z); i.e. it imposes integrability conditions to the cohomology class of T in the Euler–
Lagrange complex.

Note, however, that in the topological term T there is more information than in F. For
example, in [1] it is shown that, if quantization conditions are satisfied, then exp(i

∫
�

A) is
well defined.
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